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SYNOPSIS 

Anionic polymerization with unequal reactivity in batch reactors is a nonlinear problem, 
and in order to determine the rate constants using the experimental molecular weight 
distribution (MWD) and conversion vs. time of polymerization, the simulation equations 
need to be solved repeatedly. In this work, we evolved an efficient algorithm in which the 
experimental MWD yields the reactivity ratio directly while conversion data give the values 
of all rate constants. For doing this, we proposed a series solution for the reacting species 
in terms of monomer conversion. A technique similar to the finite element method for 
boundary problems is used to divide the conversion into subdomains. The size of these 
steps is decided by a convergence criterion and results were determined a t  the end of the 
conversion domain through sequential computation. The scheme can be implemented on 
a personal computer and is considerably faster and more efficient. We used experimental 
data from the literature and demonstrated our technique of evaluating the rate constants. 
0 1995 John Wiley & Sons, Inc. 

INTRODUCTION 

Anionic polymerization is an important class of po- 
lymerization in which polymers having narrow mo- 
lecular weight distribution ( MWD) and well-defined 
molecular structure ( star, branched, block copoly- 
mer, etc.) can be formed.’-3 Normally, the initiation 
step is instantaneous and the chain growth can be 
represented as 

kn 
P,+M-+P,+l ,  n = l , 2 ,  . . .  

Above, P, is an oligomer having n repeat units and 
M represents a molecule of the monomer. The prop- 
agation has been shown to be affected by the initiator 
through the gegen ion effect, and in this regard, se- 
lection of a correct initiator is important for the for- 
mation of a p ~ l y m e r . ~ - ~  In addition to this, experi- 
ments have shown that the overall propagation rate 
constant kp depends not only upon the total number 
of growing species, Xo, because of the ion-pair for- 
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mation, but also upon the nature of the reaction 
mass because of the solvating e f f e ~ t . ~ - l ~  

The termination in anionic polymerization can 
take place in following ways: ( a )  termination by 
counterions (b) chain transfer by monomer, and (c)  
chain deactivation by addition of impurities. In the 
“living” polymerization, however, these deactiva- 
tions occur at a considerably slower rate and one 
normally ignores them in the mathematical analysis. 
Experimental investigations of various 13-22 living 
systems have shown that different oligomers react 
with different rate constants. For example, the ex- 
perimental data on the MWD of PMMA of Muller 
et al.5 required at least four rate constants to describe 
the polymerization mathematically. 

The mathematical solution of irreversible anionic 
polymerization with unequal reactivity in a batch 
reactor is a nonlinear problem, and to obtain con- 
version as well as MWD of the polymer vs. time, 
the governing differential equations must be solved 
n u m e r i ~ a l l y . ~ ~ - ~ ~  If it is desired to determine different 
rate constants, one must assume the set of rate con- 
stants and carry out the simulation repeatedly to 
check the theoretically determined MWD against 
the experimental data. Muller et al.15 proposed a 
global search optimization scheme which minimizes 
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the least-square error for determining rate constants 
for anionic polymerization of methyl methacrylate. 
It is thus seen that there is a need for developing an 
efficient numerical method for this purpose and this 
is the focus of the present study. 

In this article, we determined a semianalytical 
solution of irreversible anionic polymerization with 
unequal reactivity in batch reactors and show that 
this technique is computationally considerably more 
efficient compared to existing numerical techniques. 
Our results are ideally suited for determining rate 
constants for a given set of experimental data on 
MWD and conversion vs. time of polymerization. 
From the experimental MWD results, we can di- 
rectly determine the unequal reactivity ratios ( k2/ 
k l ,  k3/k1, etc.) while the simulation gives k1 in a 
simple one-dimensional search. We demonstrate our 
technique using the experimental data of Muller et 
al.I5 and show that rate constants are obtained di- 
rectly. Chang et a1.I8 reported the polydispersity in- 
dex and average chain length for anionic polymer- 
ization of isoprene as a function of time. We used a 
two-parameter model and show that we can similarly 
determine the relevant rate constants using their 
experimental data. 

MATHEMATICAL DEVELOPMENT 

Suppose that we have a set of n nonlinear ordinary 
differential equations (ODEs) : 

where x1 to x, represent concentration variables 
which are normally bounded between 0 and 1. The 
commonly used numerical techniques divide the 
time domain, t ,  into small incremental values At  
and solve x1 to x, as an explicit function of time. In 
the numerical technique suggested in this work, we 
propose time t and x2 to x, explicitly in terms of xl 
as an infinite series. The choice of x1 is based on the 
sensitivity of the problem, and for any given physical 
situation, it is self-evident. We now show through 
the problem of irreversible anionic polymerization 
with unequal reactivity that the technique proposed 
here is computationally extremely efficient and takes 
care of nonlinearity in a natural way. 

Muller et al.I5 experimentally investigated the 
anionic polymerization of methyl methacrylate at 
-46”C, and to mathematically explain the experi- 
mental data on the MWD, they assume P1-P4 re- 
acting with different rate constants as given in the 
kinetic model of Table I. In this kinetic model, the 

initiation has been assumed to be instantaneous. 
The set of nonlinear ODEs governing the molecular 
weight distribution (MWD) of the species are also 
given in the same table. By dividing eqs. (TI.9)- 
(TI.lO) with eq. (TI.6) of the table, we get 

where 

Equations 3(a)-(d) can be easily integrated to give 
P2 to P5 in terms of P1 subject to the following initial 
conditions: 

at  t = 0, [Pi] = [Pi],, 

for i = 1, 2, 3, 4, 5 (e) (4) 

These expressions are given in Table 11. We observe 
that eq. (TI.13) governing monomer concentration 
is highly nonlinear and the approach taken in the 
literature to solve it  is to define a reduced time, 
r ,  as 

r = [MI d t  (5) 

This eliminates the nonlinearity of eqs. (TI.6)- 
(TI.12) but still cannot be solved explicitly as [Pi]  
for all i in Table I1 are known in terms of [P,] and 
not time t. As a result of this, to determine MWD 
as a function time, we must solve these equations 
numerically. Since these are numerically stiff equa- 
tions, a large truncation error is introduced, and in 
this article, we determine the semianalytical solution 
as follows: 

In this work, on the basis of sensitivity, we chose 
to make computations in the domain of monomer 
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Table I MWD Relations for Irreversible Anionic Polymerization with Unequal Reactivity 

(1) Kinetic model: 

k i  
P I  + M + p2 

p2 + M + p3 

p3 + M + p4 

k2 

k3 

4 
P4 + M -+ Pb 

Pn + M 2 P,,, n = 6 ,7 ,  - - . 
(2) The MWD relations: 

93 = - k , [P , ] [M]  
dt 

= k , [P , ] [M]  - k2[P2][M]  
dt 

dip,) = -k2 [ P 2 ] [ M ]  - k,[P,][M] 

d[p,I = -k:> [ P n ] [ M ]  - k 4 [ P 4 ] [ M ]  

dt 

dt 

~- d[ps l  - -k4 [ P 4 ] [ M ]  - k p [ P 5 ] [ M ]  

~- d[Pnl  - k,[M]([P,-,] - [P,,]) 

dt 

n = 6, 7, - I - 
dt 

(TI.1) 

(TI.2) 

(TI.3) 

(TI.4) 

(TI.5) 

(TI.6) 

(TI.?) 

(TI.8) 

(TI.9) 

(T1.lO) 

(TI.11) 

(3) Monomer balance: 

where 

(TI. 13) 

02 

(a) 
conversion, x (= 1 - [M]/[M],). We divide it into [PI] - [PJj-l = c aiui p sl 

[MI, i= 1 

[Pzl - [Pzlj-~ - O0 

[MI, i= 1 

smaller subdomains (not necessarily of equal size) 
as shown in Figure 1. In any given step (say the j th  

(b) 
step), we define a variable u as 

- c biui Sz 

m 

(4 We write [P1]-[P5] and the time of polymerization [ p 4 I  - [ P ~ ~ J - I  = c diui e s, 
in terms of infinite series as [MI, i= 1 
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Table 11 Expressions for [P,]-[P,] Through Integration of Eq. (3) for ICs of Eq. (4) 

where 

It is possible to derive this form of solution for [P2]- 
[P5] from Table I1 also. Once [PI] is known, we can 
substitute this in the results of this table, and on 
properly expanding terms, we can obtain the form 
of solutions in eq. (7). 

The assumption of this form of solution in eq. (7) 
is valid as long as the series S,-S6 are convergent. 
The motivation for assuming this form of solution 
is that the nonlinearity of differential equations in 
eqs. (TM)-(TI.lZ) of Table I are taken care of in a 
natural way. We would shortly show that the math- 

ematical manipulations like multiplication, division, 
raising to a given power, etc., do not destroy the 
series nature of the solution. In this way, i t  is pos- 
sible to determine the coefficients a, to ei sequen- 
tially without trial and error as follows: As an ex- 
ample, we substitute eq. (6) in eq. (TI.12) of Table 
I and, in principle, obtain 

We now consider (say) eq. (TI.7) for P2 and rewrite 
it as 
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Division of Time Domain into Steps 

1 2 j j+l 
0 tl t2 tj-l t j tj+l 

l X  2 j -1 X j xj+l 

I c I 

x =o x JJ ff- X 
0 

b) Variables in the jth step 

tj-l 

u=o 

[pilj-l = [Pilo 

for  i=l to m f o r  

t 

[MI j j+l 

j -1 U - 
pi 1 [Pi1 j 

i=l to m for i=l to m 

[MI j-1 “1 j+l 

Figure 1 Division of time domains into subdomains. 

We compare it  with the right-hand side of eq. (TI.7), 
and by comparing coefficients of ui, we can determine 
bi sequentially. The specific algebraic details are 
given in Appendix A including the flow chart of the 
computational scheme (Fig. 2). 

Speclfy IC of lhe MWD 
[pi] [pilo i = 1 . 2  ..... 

order (Ao , To a1 lo 01) 

Set the maximum no. of lerms 
i m a x  in the series of e q n ( 9 )  

Figure 2 Flowsheet for implementing the semianalyt- 
ical solution of this work for determining MWD a t  any 
time. 

RESULTS AND DISCUSSION 

In this work, we show that in irreversible anionic 
polymerization it is possible to relate the concen- 
trations of the higher oligomers in terms of P I .  To 
find the MWD vs. time, it is required to find P1 and 
the monomer conversion in the time domain. We 
assume the form of solution as an infinite series in- 
volving u [ defined in eq. ( 7)  ] and evaluate the coef- 
ficients of these series sequentially as shown in Ap- 
pendix A. 

In Table 111, we examine the effect of total num- 
ber of terms needed in the series of [ P1 ] for obtaining 
the MWD. We can see that a series with five terms 
gives an error less than 1% and is sufficient to obtain 
the concentrations at  any given conversion. Once 
[ Pl ] is known, [ P, ] - [ P5]  can be determined by Ta- 
ble 11. To determine the time of polymerization in 
the series form, it is desirable to have these also in 
the series form as proposed in eq. ( 7 ) .  The coeffi- 
cients of these series can either be determined by 
substituting the results of Table I1 in the differential 
equation governing [ P I ]  or substituting these series 
form of solution in their respective differential 
equation as was done for [ P1 ] in Appendix A. Both 
these approaches are equivalent, and in this work, 
we adopted the latter. For these series to be con- 
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Table I11 Effect of No. Terms on Oligomer Concentrations at 80% Monomer Conversion 

1 
2 
3 
5 

15 
RK/Gear 

1.8969 
1.9188 
1.9138 
1.9143 
1.9143 
1.8972 

4.8040 X lo-* 
1.1405 X lo-' 
1.3988 X lo-' 
1.3941 X lo-' 
1.3941 X lo-' 
1.2948 X lo-' 

1.5950 X 
1.7247 X 
1.7232 X 
1.7382 X 
1.7382 X 
1.7797 X 

5.4373 x 10-4 
5.6808 X 
5.6907 X 
5.7300 X 
5.7300 X 
5.8299 X 

9.1331 X 
9.3176 X 
9.4068 X lo-' 
9.3960 X 
9.3960 X 
9.5159 X 

8.1471 X 
8.1000 X lo-* 
8.1297 X 
8.1673 X 
8.1673 X 
8.3551 X 

2.3399 X 
2.3399 X 
2.3399 X 
2.3399 X 
2.3399 X 
2.3399 X 

* All concentrations are expressed in mol/L. 

vergent, the Leibnitz convergence criterion must be 

Thus, for the series solution to be valid, the step 
size umin is given by 

In Table IV, we give the values of u for different 
conversion levels. Further, we notice in Tables V 
and VI that the computation of the step size is in- 
variably governed by ugrnin (i.e., the series governing 
P1), and as the conversion increases, the step size 

falls drastically. To confirm this intuitive observa- 
tion that the equation governing PI is the stiffest of 
all, we carried out strategies of computation listed 
in Table V. In the first strategy (abbreviated as st 
l ) ,  we assume a series solution for all the oligomers 
and obtain urnin as envisaged in eq. (1 1). In the second 
strategy (st 2), we remove uZrnin corresponding to P1 
series and determine urnin: 

However, at the end of the step, [P,] is evaluated 
using the analytical result in eq. (TII.l) of Table I1 
and not using the series solution given in eq. 7(a). 
The variations of this have been proposed in Table 
V and the number of steps needed to reach 95% 
conversion have been given in Table VL. The study 
of this table shows the drastic fall in the number of 
steps needed and the strategy of step size for eval- 
uating the time series in the equation while [PI]-  
[P6] in a given step is governed by Table 11. This 
has been found to be the best and we need only 30 
iterations. We now. compare our results with those 
obtained by the usual computation techniques (Ta- 
ble VII) commonly in use. The Runge-Kutta (RK) 
technique of computation requires a fixed step size, 
and a step size of was found to give a stable 
solution. This requires the largest number of iter- 
ations, and for the conversion level of 80 and 95% 
conversion, 30,010 and 52,010 iterations are re- 
quired. As opposed to this, the series solution tech- 
nique requires only 30 iterations to reach 95% con- 
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Table IV 
of Eq. (7) 

The Trend of Changing Step Size for Different Levels of Conversion Using All the Six Series 

Monomer 
Conversion 

1.7880 X 
12.8400 
21 2900 
30.8000 
35.8200 
39.2040 
40.5100 
41.7200 

0.1321 
2.2590 X lo-' 
2.2510 X lo-' 

0.1837 
0.1998 
0.1938 
0.1854 
0.1736 

0.1117 
4.4165 X lo-' 
3.4630 X lo-' 
4.3980 X 
3.1527 X 
1.5620 X 
5.2720 X 
1.9830 X 

0.1353 
4.4049 X lo-' 
2.6840 X lo-' 

0.1039 
0.1128 
0.1189 
0.1213 
0.1236 

2.0350 X 
3.1543 X 
5.3770 X 
4.3600 X 
8.1010 X 
4.3051 X lo-' 
2.5140 X lo-' 
6.7186 X 

2.0360 X 
3.1544 X lo-' 
5.3770 X 
4.3100 X lo-' 
8.1010 X lo-' 
5.3120 X lo-' 
3.7630 X lo-' 
0.3415 X lo-' 

4.4800 X 
1.3995 X lo-' 
1.7330 X lo-' 
1.7550 X lo-' 
9.6210 X lo-' 
8.5060 X lo-' 
5.1630 X lo-' 
3.9290 X lo-' 

version. We also compared our solution using the 
Gear's algorithm of computation where the step size 
is decided by the accuracy desired and changes from 
iteration to iteration. This is known to be the best 
numerical technique, and for irreversible anionic 
polymerization for a specified tolerance of the value problems: 

simulated results obtained and they are indistin- 
guishable from each other. 

It is necessary at  this stage to highlight advan- 
tages of our approach for solving the set of ODEs 
from the regular finite element method for boundary 

number of iterations needed are much fewer com- 
pared to that for the RK technique and is found to 
be 422 for 80% conversion as given in Table VI. 
Figure 3 shows a comparison between the Gear and 

Table V 
Out the No. Iterations 

List of Strategies Adopted in Finding 

Strategy No. Strategy 

1 u,in = min 1 uimin I 
i=1,6 

(a) The independent variable is selected as an 
incremental conversion instead of reduced 
time. 

(b) The size of the step is not fixed a priori, but 
is directly determined using the convergence 
requirements. No adaptation of the sizes of 
steps is thus necessary. 

(c) On the j th step, u is zero at one end (as in 
the conventional technique) and is umin (and 
not unity) at the other end. 

(d) The values of u and other variables are de- 
termined onIy at the other end of the step 
and at no intermediate location. However, if 
so desired, these values can easily be obtained 
using the series solution whose coefficients 
are already determined. 

(e) Since the series solution is valid up to umi, 
and beyond this new coefficients are deter- 
mined which satisfy the ODEs, the slopes at 
the boundaries of adjacent steps are auto- 
matically matched. 
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Table VI No. Iterations Required for the % Conversion for Given Strategies of Table V 

No. of table 50 60 70 80 90 95 

St 1 
St 2 
St 3 
St 4 
St 5 
St 6 
St 7 
Gear 

9,144,550 
1 2  
39 
39 
12 
13 

525,510 
305 

- 
15 
4 

41 
41 
14 

336 
- 

16 
16 
43 
43 
16 

362 

30 
27 
60 
60 
27 

422 

32 
28 
69 
69 
29 

509 

33 
30 
71 
71 
30 
- 

932 

(f) The function evaluation is not needed (as 
done in the Gear or RK techniques). Only 
the computation of coefficients are necessary 
and is similar to the requirements of conven- 
tional finite element technique. 

(g) As in the case of conventional finite element 
methods for boundary value problems, alge- 
braic manipulations are necessary before 
coefficients of the series could be determined. 
Once this is done, the method suggested in 
this work can be implemented on a personal 
computer. 

We now show that our algorithm is ideally suited 
to determine rate constants from experimental 
data on MWD and time of anionic polymerization. 

Experimental data on the anionic polymeriza- 
tion of methyl methacrylate a t  low temperatures 
of -46°C have been reported by Muller et al.15 A t  
such a low temperature, the polymerization has 
been assumed to be irreversible with no side re- 
actions. From the information of MWD, it  is de- 

Table VII 
Conversion Levels for Strategy 6 of Table V 

No. Iterations Required for Various 

Conversion Semianalytical 
(%) RK Gear Solution 

20 
30 
40 
50 
60 
70 
80 
90 
95 

3010 
6010 

10,010 
13,010 
17,010 
23,010 
30,010 
43,010 
54,010 

195 
257 
287 
305 
336 
362 
422 
509 
593 

5 
9 

10 
12 
14 
16 
26 
29 
30 

sired to determine the chain length-dependent rate 
constants k ,  given in eq. (1). Muller et al. used a 
global optimization scheme to determine the rate 
constants. In this method, the overall error e de- 
fined as 

where Wi is equal to [P,]/Cp"=l [PL]. Wppt' and 
are the experimental and theoretical Wi, re- 

spectively. We now show that the experimental 
measurements on the MWD of the polymer vs. time 
directly yield the information on rate constants. We 
evaluate [PI J/[Pll0, [P2]/[P2]o, etc., from the exper- 
imental MWD, and on substituting these results in 
Table 11, we can easily find k2/k1, k3/kl,  etc., directly. 
We then determine k ,  using our simulation program 
(see Appendix A for details) to give kl so that the 
computed and experimental time match. The rate 
constants so evaluated have been listed in Table VIII 

WTheo 

" ~ ' " ' l " ' ' ~ ' ' ' '  1.0000 

- 0.9000 

/ 0 . 8 0 0 0  

- Sernlanalylical solullon rorulls 
_.___. G e a r i  solullon results 

0.0037 

0.0025 

0.0012 

0.0000 
0.0000 ,,,o.Moo 1.0000 

0.3000 6 
0.2000 

0.1000 

1.5000 2.0000 

Tlmo (saconds) 

Figure 3 
solution with that obtained by numerical computations. 

Comparison of MWD using the semianalytical 
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Table VIII Rate Constants for Li+ and Na+ as Gegen Ions 

Conversion Gegen Reported Values" Simulated Values 
(%) Ion [L/(mol-s)l [L/(mol-s)l Case 

14 

23 

79 

Li' 

Li+ 

Na' 

kl = 110.0000 
k2 = 32.0000 

k4 = 50.0000 
k, = 70.000 

k1 = 110.0000 

k3 = 40.0000 

k z  = 32.0000 
k 3  = 40.0000 
k4 = 50.0000 
kp = 70.0000 

kl = 110.0000 
k2 = 310.0000 
k, = 100.0000 

kl = 135.5850 
kz = 45.9023 
k3 = 37.1226 
k4 = 54.2340 
kp = 67.7925 

kl = 170.1010 
k2 = 31.0676 
k3 = 33.2343 
k4 = 38.2599 
kp = 38.2579 

kl = 216.6346 
k2 = 303.9380 
k3 = 108.3173 
k4 = 64.9904 
kp = 10.8317 

A 

B 

C 

for different cases. These rate constants have been 
found to be substantially different from those re- 
ported by Muller et al. In Figure 4 we plot our sim- 
ulated results for the three conversions listed in Ta- 
ble VIII and a good match with the experimental 
data of Muller et al. is seen. 

Chang et al." carried out the anionic polymer- 
ization of isoprene and reported the polydispersity 
index (HI) of the polymer formed for time, t = co. 
We now show that our algorithm can be used for 
this case also. We assume that all the oligomers react 
with the same rate constant except PI which reacts 
differently as given in Table IX in which we have 

summarized the MWD and moment relations. From 
eqs. (TIX.2), (TIX.4), and (TIX.5) of this table, we 
get 

(a) dA1 - rp (A, - [P,]) - 1 
dP1 [Pll 

d X 2  
~ = -3 - (2X1 + Xo - 3[P1]) (b) (14) 
dP1 [PI1 

These can be integrated to get 

A 0  

[ P l l O  
y - yo = (1 - rp)( l  - x p )  - rp __ In xp  (a) 

0 cnul 
0 Caw B Eaplal results 
A Cawc 

Smulated naults 
Calculat~d by Miiller 
fw the above 3ca-s 

Series 5dutarn rrsulls 
for the abcve 3casos 

0.00 2.00 4.00 6.00 8.00 10.00 
i of Pfi) 

Figure 4 
those obtained by semianalytical technique. 

Comparison of the experimental MWD with 
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Table IX 
Chang et al. for Anionic Polymerization of Isoprene 

Two-Parameter Model for Correlating Experimental Data of 

- 

Kinetic model: 
ki 

PI + M -+ P2 

kP 

P, t M --* P,,, n = 2,3, * . . 

MWD relations: 

d[P,l = -k,[P,][M] 
dt  

-- dip,' - kp[M]([P,-,] - [P,]) n = 2, 3, . . * 
dt 

Relations for first three moments of MWD: 

A, = constant = [go 

- =  dX1 kJP,ItMI + kp[MI(h - [PI]) 
dt  

- _  dXz - 3kl[P,][M] + kp[M](2X, + Xo - 3[Pl]) 
dt  

where 

xi = c ni[Pn] i L 0 

(TIX.l) 

(TIX.2) 

(TIX.3) 

(TIX.4) 

(TIX.5) 

(TIX.6) 

(TIX.7) 

G = XO/[P,I* (f) [P,] ,  Xoo, Xlo, and Xz0 are each 0.6317 X mol/ 
L. Hence, 

rp = (kp /kd  (d 
As an example, Chang et al. reported [run (a) in 

yo = 20 = A,* = 1 

Table 3 of Ref. 18), the product had an HI of 1.26. 
The initiator concentration was taken to be 0.6317 
X mol/L. For instantaneous initiation, [ I lO,  

and the values of y and z are, respectively, 3.1616 
and 18.2723. On substituting these two into eq. 
(22a) and (22b), we find that xp = 0.508 and rp = 

Table X 
Experimental Data of Ref. 18 

Demonstration of Unequal Reactivity for the Anionic Polymerization of Isoprene for the 

PDI M n  rp (from A,) XP rp (from A,) 

Without modifier 
1.26 
1.44 

1.35 
1.27 

With TMEDA modifier 
1.15 
1.05 

With TPPO modifier 

215 
339 

235 
200 

255 
160 

6.426 
14.361 

7.9947 
5.662 

7.968 
2.713 

0.448 
0.457 

0.456 
0.452 

0.430 
0.422 

6.425 
14.361 

7.946 
5.662 

7.970 
2.713 

TPPO: tripiperidinophosphine; TMEDA: tetramethylethylenediamine. 
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8.618 satisfy these equations. Table VIII gives rp 
for various initiator concentrations and HI of the 
product polymer. This clearly demonstrates that  
P1 reacts differently compared to  the other 
species. 

CONCLUSIONS 

In this article, we analyzed the irreversible anionic 
polymerization of methyl methacrylate in which the 
lower oligomers have been assumed to react with 
different rates. The ODES governing the concentra- 
tion of these and the monomer conversion were 
solved using a series solution technique proposed in 
this work. To ensure the convergence of these series, 
the conversion domain is divided into smaller steps 
of size u ,  which is determined using the Leibnitz 
convergence criterion. The results obtained have 
been compared with those computed from the Runge 
Kutta and the Gear methods. In the series solution 
technique, the number of iterations required to 
achieve 95% conversion was only 30, while the above 
numerical technique require more than at least 10 
times this number. A step size as small as has 
been used in the Runge Kutta method to meet the 
demands in accuracy. We also compared the exper- 
imental measurements done by Muller et al. and 
Chang et al. with our simulated results. The results 

have been found to be in excellent agreement with 
each other. 

APPENDIX A: DETERMINATION OF 
COEFFICIENTS OF SERIES IN EQ. (7)  

We substitute eqs. (6) and ( 7 )  in eq. (TI.13) of Table 
I to obtain 

Table A.1 The Coefficients in the Series Given in eu. (7) 

where 

d.  e, 

[P41,-1) - 
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To determine the time of poIymerization, we in- 
tegrate eq. ( A . l )  to get 

00 U 

t, - = C hiu'+'nO(i + 1) = 2 Ti,' 
i = O  i= 1 

where 

(A.3 1 

The coefficients ai to ei are summarized in Table 
A.I. The flowsheet for sequential computation is 
given in Figure 2. First, for a given set of initial 
conditions, Ao,  ho, and a, to el are computed and 
then A, ,  T1, a2 to e2 determined, and so on. Now, 
since we have obtained the time series, we can di- 
rectly integrate eq. (TI.6) as follows: 

U 

= k , [ M ] ,  (1 - u )  2 itiu'-' du (A.4) 
i=l 

From eq. (A.4) ,  we can derive 
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